Random Walks: WEEK 5 1 Preliminary: reversible chains

ثبت نشده
چکیده

• We can still talk about reversibility if the chain is only irreducible and positive-recurrent. • If one assumes that the chain is in stationary distribution from the start, then the backwards chain Xn, Xn−1, . . . has the same transition probabilities as the original chain, hence the name “reversible”. • If π∗ satisfies the detailed balance equation, then π∗ = π∗P . • The reciprocal statement is wrong, as we will see in some counter-examples. • Note that in general, the detailed balance equation is easier to solve than the equation π∗ = π∗P , but there are unfortunately no simple conditions that ensure that the detailed balance equation is satisfied.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random Walks on Infinite Graphs and Groups — a Survey on Selected Topics

Contents 1. Introduction 2 2. Basic definitions and preliminaries 3 A. Adaptedness to the graph structure 4 B. Reversible Markov chains 4 C. Random walks on groups 5 D. Group-invariant random walks on graphs 6 E. Harmonic and superharmonic functions 6 3. Spectral radius, amenability and law of large numbers 6 A. Spectral radius, isoperimetric inequalities and growth 6 B. Law of large numbers 9 ...

متن کامل

Random Walks on Finite Quantum Groups

1 Markov chains and random walks in classical probability . . 3 2 Quantum Markov chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 Random walks on comodule algebras . . . . . . . . . . . . . . . . . . . . . . 7 4 Random walks on finite quantum groups . . . . . . . . . . . . . . . . . . 11 5 Spatial Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . ....

متن کامل

Two conductance theorems, two canonical path theorems, and two walks on directed Cayley graphs

We show two Conductance-like theorems for mixing time of non-reversible non-lazy walks. These bounds involve a measure of expansion which expresses how well ergodic flow is distributed among vertices, which while conceptually similar to Blocking Conductance apply to non-lazy non-reversible Markov chains as well. As an application we derive two canonical path theorems for mixing time of non-reve...

متن کامل

Random walks on directed Cayley graphs

Previous authors have shown bounds on mixing time of random walks on finite undirected Cayley graphs, both with and without self-loops. We extend this to the most general case by showing that a similar bound holds for walks on all finite directed Cayley graphs. These are shown by use of two new canonical path theorems for mixing time of non-reversible Markov chains. The first result is related ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017